Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Xiao-Ping Shen ${ }^{\text {a }}$ and Ai-Hua Yuan ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Materials Science and Engineering, East China Shipbuilding Institute, Zhenjiang 212003, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.048$
$w R$ factor $=0.099$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

cis-Dibromobis(1,10-phenanthroline)manganese(II)

In the title complex, $\left[\mathrm{MnBr}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4}\right)\right]$, there is a weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$ intermolecular interaction in the crystal structure, giving rise to molecular chains along the a axis.

Received 7 June 2004 Accepted 30 June 2004 Online 9 July 2004

Comment

In recent years, simple metal complexes of phenanthroline and its derivatives have attracted great interest because they can be used to study the hydrolysis of biologically important phosphate diesters with poor leaving groups, e.g. DNA (Wall et al., 1999). These complexes can also be used to develop new diagnostic and therapeutic agents in DNA binding and cleavage (Barton, 1986; Naing et al., 1995). We report here the title complex, (I), a new metal complex of phenanthroline. A search of the January 2004 Cambridge Structural Database (Allen, 2002; Bruno et al., 2002) found no report of (I).

(I)

Compound (I) has expected values for bond lengths and angles. The dihedral angle between the two phenanthroline planes is $84.74(6)^{\circ}$ and the average $\mathrm{Mn}-\mathrm{Br}$ bond length is 2.535 (2) Å, within the range of previously reported values [2.496 (2) (Kienitz et al., 2000) and 2.677 (2) A (Goodgame et al., 1999)]. There is a weak intermolecular interaction, C13-

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids.

Figure 2
The packing of (I), viewed down the a axis.

Figure 3
The molecular chains formed by the weak intermolecular interaction (dashed lines) of $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Br}^{\mathrm{i}}$ [symmetry code: (i) $x, \frac{3}{2}-y, \frac{1}{2}+z$.]
$\mathrm{H} 13 \cdots \mathrm{Br} 2^{\mathrm{i}}$ [symmetry code: (i) $x, \frac{3}{2}-y, \frac{1}{2}+z$], in the structure, giving one-dimensional molecular chains arranged along the a axis, as shown in Figs. 2 and 3.

Experimental

To a warm solution of 1,10-phenanthroline ($0.344 \mathrm{~g}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{ml})$ was added $\mathrm{MnBr}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.265 \mathrm{~g}, 1 \mathrm{mmol})$ with slow heating and stirring. The mixture was refluxed for 2 h , then cooled to room temperature. After about two weeks, yellow single crystals suitable for X-ray crystallographic analysis were obtained. Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{MnN}_{4}$: C 50.11, H $2.80, \mathrm{~N} 9.74 \%$; found: C 50.05, H 2.76, N 9.69%.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{MnBr}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4}\right)\right]} \\
& M_{r}=575.17 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=10.423(3) \AA \\
& b=16.223(3) \AA \\
& c=13.244(3) \AA \\
& \beta=99.62(2)^{\circ} \\
& V=2208.0(9) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.730 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Cell parameters from 1225 reflections
$\theta=2.5-20.4^{\circ}$
$\mu=4.24 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow $0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.61, T_{\text {max }}=0.66$
9269 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.099$
$S=1.02$
4334 reflections
280 parameters
H -atom parameters constrained

4334 independent reflections
3284 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-20 \rightarrow 20$
$l=-16 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.05 P)^{2}\right. \\
& \quad+1.55 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.96 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.73 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{Mn} 1$	$2.5313(10)$	$\mathrm{Mn} 1-\mathrm{N} 3$	$2.429(4)$
$\mathrm{Br} 2-\mathrm{Mn} 1$	$2.5268(11)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.445(4)$
$\mathrm{Mn} 1-\mathrm{N} 4$	$2.391(4)$	$\mathrm{Mn} 1-\mathrm{N} 1$	$2.448(4)$
			$99.86(9)$
$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 3$	$67.06(13)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{Br} 2$	$160.63(9)$
$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 2$	$95.51(13)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Br} 2$	$161.29(11)$
$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 2$	$161.56(12)$	$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{Br} 1$	$99.77(9)$
$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 1$	$80.27(13)$	$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{Br} 1$	$95.62(10)$
$\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{N} 1$	$107.97(12)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{Br} 1$	$92.04(9)$
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1$	$61.13(12)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Br} 1$	$93.66(3)$
$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{Br} 2$	$99.19(11)$	$\mathrm{Br} 2-\mathrm{Mn} 1-\mathrm{Br} 1$	
$\mathrm{~N} 3-\mathrm{Mn} 1-\mathrm{Br} 2$	$89.27(9)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Br}^{2}$	0.93	2.78	$3.466(5)$	131

Symmetry code: (i) $x, \frac{3}{2}-y, \frac{1}{2}+z$.
All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve and refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL and MERCURY (Version 1.2.1; Bruno et al., 2002).

This work was supported by the Natural Science Foundation of the Education Commission of Jiangsu Province (No. 01 KJB150010).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Barton, J. K. (1986). Science, 233, 727-734.
Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Goodgame, D. M. L., Grachvogel, D. A., Holland, S., Long, N. J., White, A. J. P. \& Williams, D. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3473-3414.
Kienitz, C. O., Thone, C. \& Jones, P. G. (2000). Z. Naturforsch. Teil B, 55, 587596.

Naing, K., Taniguchi, M, Takahashi, M. \& Yamagishi, A. (1995). Inorg. Chem. 34, 350-356.
Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. \& Chin. J. (1999). J. Am. Chem. Soc. 121, 4710-4711.

